Abstract
We investigate scaling phenomena at first-order quantum transitions, when the boundary conditions favor one of the two phases. We show that the corresponding finite-size scaling behavior, arising from the interplay between the driving parameter and the finite size of the system, is more complex than that emerging when boundary conditions do not favor any phase. We discuss this issue in the framework of the paradigmatic one-dimensional quantum Ising model, along its first-order quantum transition line driven by an external longitudinal field.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have