Abstract

We consider a finite size scaling function across a topological phase transition in 1D models. For models of non-interacting fermions it was shown to be universal for all topological symmetry classes and markedly asymmetric between trivial and topological sides of the transition (Gulden et al 2016). Here we verify its universality for the topological transition between dimerized and Haldane phases in bilinear-biquadratic spin-1 chain. To this end we perform high-accuracy variational matrix product state simulations. We show that the scaling function, expressed in terms of $L/\xi$, where $L$ is the chain length and $\xi$ is the correlation length, coincides with that of three species of non-interacting massive Majorana fermions. The latter is known to be a proper description of the conformal critical theory with central charge $c=3/2$. We have shown that it still holds away from the conformal point, including the finite size corrections. We have also observed peculiar differences between even and odd size chains, which may be fully accounted for by residual interactions of the edge states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.