Abstract
This paper is devoted to the finite Larmor radius approximation of the Fokker-Planck-Landau equation, which plays a major role in plasma physics. We obtain a completely explicit form for the gyroaverage of the Fokker-Planck-Landau kernel, accounting for diffusion and convolution with respect to both velocity and (perpendicular) position coordinates. We show that the new collision operator enjoys the usual physical properties; the averaged kernel balances the mass, momentum, and kinetic energy and dissipates the entropy, globally in velocity and perpendicular position coordinates.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have