Abstract
In this paper we consider finite groups $G$ satisfying the following condition: $G$ has two columns in its character table which differ by exactly one entry. It turns out that such groups exist and they are exactly the finite groups with a non-trivial intersection of the kernels of all but one irreducible characters or, equivalently, finite groups with an irreducible character vanishing on all but two conjugacy classes. We investigate such groups and in particular we characterize their subclass, which properly contains all finite groups with non-linear characters of distinct degrees, which were characterized by Berkovich, Chillag and Herzog in 1992.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.