Abstract

The isometry group of a compact n-dimensional hyperbolic manifold is known to be finite. We show that for every n≥2, every finite group is realized as the full isometry group of some compact hyperbolic n-manifold. The cases n=2 and n=3 have been proven by Greenberg (1974) and Kojima (1988), respectively. Our proof is non constructive: it uses counting results from subgroup growth theory to show that such manifolds exist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.