Abstract
We exhibit the first examples of compact orientable hyperbolic manifolds that do not have any spin structure. We show that such manifolds exist in all dimensions $n \geq 4$. The core of the argument is the construction of a compact orientable hyperbolic $4$-manifold $M$ that contains a surface $S$ of genus $3$ with self intersection $1$. The $4$-manifold $M$ has an odd intersection form and is hence not spin. It is built by carefully assembling some right angled $120$-cells along a pattern inspired by the minimum trisection of $\mathbb{C}\mathbb{P}^2$. The manifold $M$ is also the first example of a compact orientable hyperbolic $4$-manifold satisfying any of these conditions: 1) $H_2(M,\mathbb{Z})$ is not generated by geodesically immersed surfaces. 2) There is a covering $\tilde{M}$ that is a non-trivial bundle over a compact surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.