Abstract

We exhibit the first examples of compact orientable hyperbolic manifolds that do not have any spin structure. We show that such manifolds exist in all dimensions $n \geq 4$. The core of the argument is the construction of a compact orientable hyperbolic $4$-manifold $M$ that contains a surface $S$ of genus $3$ with self intersection $1$. The $4$-manifold $M$ has an odd intersection form and is hence not spin. It is built by carefully assembling some right angled $120$-cells along a pattern inspired by the minimum trisection of $\mathbb{C}\mathbb{P}^2$. The manifold $M$ is also the first example of a compact orientable hyperbolic $4$-manifold satisfying any of these conditions: 1) $H_2(M,\mathbb{Z})$ is not generated by geodesically immersed surfaces. 2) There is a covering $\tilde{M}$ that is a non-trivial bundle over a compact surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call