Abstract

The frequency-dependent conductivity is studied for the one-dimensional Hubbard model, using a selection rule, the Bethe ansatz, and symmetries associated with conservation laws. For densities where the system is metallic the absorption spectrum has two contributions, a Drude peak at omega = 0 separated by a pseudogap from a broad absorption band whose lower edge is characterized by a nonclassical critical exponent. Our findings shed new light on the "far infrared puzzle" and other optical properties of metallic organic chain compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.