Abstract
In this paper we consider the global existence of weak solutions to a class of Quantum Hydrodynamics (QHD) systems with initial data, arbitrarily large in the energy norm. These type of models, initially proposed by Madelung [24], have been extensively used in Physics to investigate Supefluidity and Superconductivity phenomena [10], [19] and more recently in the modeling of semiconductor devices [11]. Our approach is based on various tools, namely the wave functions polar decomposition, the construction of approximate solution via a fractional steps method which iterates a SchrÖodinger Madelung picture with a suitable wave function updating mechanism. Therefore several a priori bounds of energy, dispersive and local smoothing type allow us to prove the compactness of the approximating sequences. No uniqueness result is provided. A more detailed exposition of the results is given in [2].Key wordsAnalysis of PDEsmathematical physics
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.