Abstract

This paper describes existence, uniqueness and special eigenfunction representations of H1-solutions of second order, self-adjoint, elliptic equations with both interior and boundary source terms. The equations are posed on bounded regions with Dirichlet conditions on part of the boundary and Neumann conditions on the complement. The system is decomposed into separate problems defined on orthogonal subspaces of H1(Ω). One problem involves the equation with the interior source term and the Neumann data. The other problem just involves the homogeneous equation with Dirichlet data. Spectral representations of the solution operators for each of these problems are found. The solutions are described using bases that are, respectively, eigenfunctions of the differential operator with mixed null boundary conditions, and certain mixed Steklov eigenfunctions. These series converge strongly in H1(Ω). Necessary and sufficient conditions for the Dirichlet part of the boundary data to have a finite energy extension are described. The solutions for a problem that models a cylindrical capacitor is found explicitly. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.