Abstract
We develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. We check that some known mixed finite elements for the stress–displacement formulation of elasticity fit our framework. We also define, in dimension two, the first conforming finite element spaces of metrics with good linearized curvature, corresponding to strain tensors with Saint-Venant compatibility conditions. Cochains with coefficients in rigid motions are given a key role in relating continuous and discrete elasticity complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.