Abstract

Auxetic materials are a special case of cellular materials, which exhibit a negative Poisson’s ratio. This in fact is the reason behind their peculiar behavior i.e. lateral shrinkage under longitudinal compression and vice versa. Since these materials do not obey the laws of “normal” materials and go beyond common sense, they are still an emerging class which can be put to use for various purposes like self-locking reinforcing fibers in composites, controlled release media, self-healing films, piezoelectric sensors, and also be used in biomedical engineering. Their stress-strain behavior, Poisson’s ratio and impact energy absorption are controlled by bulk material as well as the unit cell geometry. Among many forms of auxetic structures available, we have chosen a three-dimensional reentrant auxetic honeycomb unit cell. The unit cell geometrical parameters were taken from literature. In this study, we try to understand the effects of strut angle through finite element simulations while keeping the bulk material, unit cell size, strut thickness and number of repetitions constant. A total of three different angles were tested, based on which we conclude that as angle increases, the Poisson’s ratio increases and Energy absorption is maximum at 30 deg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.