Abstract

Abstract The problem of unsteady, incompressible viscous flow between two rotating concentric spheres has been investigated here. The full Navier-Stokes equations in terms of the velocity components u, v w and the pressure p , using spherical coordinates for axially symmetric flow, were solved by means of the finite element method in the spatial dimension and the alternating-direction method in the time dimension using Glowinski's algorithm. The element used is an annular-sector-type element with a bilinear approximation for the velocity components and with constant pressure within the element. Reynolds numbers in the range from 1 to 1000, gap size 0.5 and different combinations of the angular velocity of the inner and outer spheres were studied. In some of these cases a steady-state solution was possible, while in others only a transient solution was possible. This method proved to be successful and powerful in predicting the behavior of the flow for these nonlinear-type problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.