Abstract
This paper proposes a new method of simulating ductile fracture in steel structures under large amplitude cyclic straining experienced in earthquakes. The method is developed based on an existing micromechanical model originally proposed for predicting crack initiation in ultra-low cycle fatigue, ULCF. It involves a step-by-step simulation of material degradation within the framework of conventional nonlinear FEM. The method is validated through simulating fracture in a structural detail (column-to-base plate connection) for which several cyclic tests has been previously conducted. It is found that the method can successfully predict the cracking site, its propagation path, the number of cycles corresponding to crack initiation, and also final fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.