Abstract

The finite element modeling method has been widely applied in the modeling of the cutting process to characterize the instantaneous and microscale deformation mechanism that was difficult to obtain using physical experiments. The lubrication and cooling conditions, such as minimum quantity lubrication and cryogenic liquid nitrogen, affect the thermo-mechanical behaviors and machined surface integrity in the cutting process. In this work, a grain-size-dependent constitutive model was used to model orthogonal cutting for Ti-6Al-4V alloy with MQL and LN2 conditions. The cutting forces and chip morphologies that were measured in the cutting experiments of Ti-6Al-4V alloy were used to validate the simulated forces. The relative errors between the measured and simulated principal forces were less than 8%, while the relative errors of thrust forces were less than 19%. The predicted chip morphologies and surface grain refinement agreed well with the experimental results under the conditions with different uncut chip thicknesses and edge radii. Additionally, the relationship between the plastic displacement and grain refinement, as well as the microhardness and residual stresses under MQL and cryogenic conditions, were discussed. This work provides an effective modeling method for the orthogonal cutting of Ti-6Al-4V alloy to understand the mechanism of the plastic deformation and machined surface integrity under the MQL and LN2 conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.