Abstract

Three-dimensional crystal plasticity finite element (CPFE) simulations are performed to study the coupled thermo-mechanical response of aluminium alloy 7075 under hot compression loadings. To improve the computational efficiency, a grain-scale representative volume element model with periodic boundary conditions is adopted to represent the macroscopic response. The initial grains are created using Voronoi tessellation method, and the grain orientations are obtained from the electron back-scatter diffraction test. The simulated results indicate that the effects of the grain properties on the local deformation and temperature distribution of the alloy are significant during the hot deformation. The temperature continuity can be found across some grain boundaries while there is a temperature gap at other grain boundaries. The proposed coupled thermo-mechanical CPFE model is able to provide detailed microstructure evolution and temperature distribution in the studied alloy during the hot deformation, which cannot be easily obtained by experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call