Abstract

Tailored welded blank (TWB) consists of steel sheets of different thicknesses and strength which welded into one sheet to reduce weight and production costs, to increase dimensional accuracy and strength. Since a tailored blank is composed of different sheets of metals having different thicknesses and properties, the forming of tailored blanks then creates a lot of technical problems especially in the scheme of deformation. The objective of this work was to evaluate the drawability of tailored blanks. In order to assess the forming behavior of the tailor-welded blanks under the influence of weld orientations, a finite element and experimental methods were conducted. Three welded specimens with weld lines oriented at an angle of 0°, 90° and 45° with respect to the direction of load were investigated. The finite element result showed in a good agreement with the experimental result. The result of the experiment showed that a welded part was characterized by a higher strength and lower plasticity compared to those of the base material. Hence, the weld influences the strain distribution of the tailor-welded specimens. This phenomenon depends strongly on the direction of the weld against the direction of tensile load. The lowest strains occur in the specimen with a longitudinal weld.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call