Abstract
We present a three-dimensional finite element algorithm for direct current resistivity modelling. The standard Fortran code allows for nearly arbitrary conductivity structures including general anisotropy. The problem is formulated in terms of secondary potentials where mixed boundary conditions are incorporated. Also in case of anisotropy, this type of boundary condition is superior to the Dirichlet type. We have verified the finite element method using an anisotropic two-layered earth, whose analytical solutions are available. For this simple model, the algorithm achieves high accuracy. The relative deviation between numerical and analytical solution is less than 1.2%. Due to the lack of further analytical references, the responses of three representative model types serve as a cross-check for plausibility and prove the operativeness of the code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.