Abstract

PurposeThis paper sets out to present developments of a numerical model of squeeze casting process.Design/methodology/approachThe entire process is modelled using the finite element method. The mould filling, associated thermal and thermomechanical equations are discretized using the Galerkin method. The front in the filling analysis is followed using volume of fluid method and the advection equation is discretized using the Taylor Galerkin method. The coupling between mould filling and the thermal problem is achieved by solving the thermal equation explicitly at the end of each time step of the Navier Stokes and advection equations, which allows one to consider the actual position of the front of the filling material. The thermomechanical problem is defined as elasto‐visco‐plastic described in a Lagrangian frame and is solved in the staggered mode. A parallel version of the thermomechanical program is presented. A microstructural solidification model is applied.FindingsDuring mould filling a quasi‐static Arbitrary Lagrangian Eulerian (ALE) is applied and the resulting temperatures distribution is used as the initial condition for the cooling phase. During mould filling the applied pressure can be used as a control for steering the distribution of the solidified fractions.Practical implicationsThe presented model can be used in engineering practice. The industrial examples are shown.Originality/valueThe quasi‐static ALE approach was found to be applicable to model the industrial SQC processes. It was found that the staggered scheme of the solution of the thermomechanical problem could parallelize using a multifrontal parallel solver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.