Abstract

The surface of 5052 Al alloy plates is severely plastically deformed via multiple impacts by high-velocity tungsten carbide/cobalt (WC/Co) balls in a surface nanocrystallization and hardening (SNH) process. The surface roughness of 5052 Al alloy plates as a function of the impacting ball size and processing time has been evaluated via non-contact 3D profilometry. A three-dimensional finite element (FE) model has been developed to simulate the formation of peaks and valleys during the SNH process. The peak-to-valley distance predicted from the FEM matches the maximum PV value measured experimentally quite well, indicating that surface roughening of 5052 Al alloy plates during the SNH process using WC/Co balls is mainly dictated by the indentation process of the impacting balls. The implications of this surface roughening mechanism in the final surface roughness, processing time, related microstructure change, and property alteration are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call