Abstract

A finite-element model is proposed for the time-domain analysis of electrostrictive materials. Hom's material model, developed for lead magnesium niobate (PMN) ceramics, is used. It includes the quadratic dependence of strain with polarization, the saturation of polarization, assumes constant temperature, and excludes hysteresis. The theoretical formulation is justified by the principle of virtual works. The numerical model is obtained after discretization in space and time. The validation is performed by comparing numerical results with semianalytical results for an electrostrictive spherical shell subjected to a step in voltage or in charge. From these results, a method to compute the coupling coefficient of electrostrictive materials, based on Ikeda's definition, is proposed and applied to a bar with parallel electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.