Abstract

A flat-shell element is presented for the active control of functionally graded material (FGM) shells through integrated piezoelectric sensor/actuator layers. The finite element formulation based on first-order shear deformation theory (FSDT) can be applied to shells ranging from relatively thin to moderately thick dimensions. A constant gain displacement and velocity feedback control algorithm coupling the direct and inverse piezoelectric effects is applied to provide active control of the integrated FGM shell in a self-monitoring and self-controlling system. Frequency response characteristics of the FGM shell containing the piezoelectric sensors/actuators are analyzed in the frequency domain. The effects of constituent volume fraction and the influence of feedback control gain values on the dynamic responses of the FGM shell system are examined in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.