Abstract

AbstractIn this paper, a generic finite element formulation is developed for the static and dynamic control of FGM (functionally graded material) shells with piezoelectric sensor and actuator layers. The properties of the FGM shell are graded in the thickness direction according to a volume fraction power‐law distribution. The proposed finite element model is based on variational principle and linear piezoelectricity theory. A constant displacement and velocity feedback control algorithm coupling the direct and inverse piezoelectric effects is applied in a closed‐loop system to provide feedback control of the integrated FGM shell structure. Both static and dynamic control of FGM shells are simulated to demonstrate the effectiveness of the proposed active control scheme within a framework of finite element discretization and piezoelectric integration. Copyright © 2002 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.