Abstract

A two-dimensional finite element model has been developed to investigate the friction damping characteristics of suspensions with so-called “constant-damping” friction wedges widely used in three-piece bogie wagons in Australia. The model was used to simulate the suspension during pitch modes. The simulation results show that the friction damping force in the suspension pitch modes is dependent on the friction conditions on the wedge contact surfaces, wagon speed, and the wedge shape and elasticity effects including the stuck state. The suspension pitch movements of a three-piece bogie with dry friction wedges can cause wedge rotation and partial separation of wedge contacting surfaces, which seriously affects the wedge friction damping effectiveness. The curved shape of wedge angular surface can significantly improve the friction damping characteristics of three-piece bogie suspensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.