Abstract

The fundamental concept of magnetically confined nuclear fusion devices is the magnetohydrodynamic (MHD) equilibrium: the pressure gradient due to highly energetic charged particles is balanced by the Lorenz force due to strong magnetic fields. Hence, numerical methods for MHD equilibria are also fundamental for fusion engineering applications. We rely here on a finite element method on composite meshes for the simulation of axisymmetric equilibria in tokamaks, torus-shaped nuclear fusion devices. One mesh with Cartesian quadrilaterals covers the domain accessible by the plasma and one mesh with triangles discretizes the region outside the chamber. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the principal unknown, the poloidal magnetic flux, while preserving accurate meshing of the geometric details in the exterior. We show that higher order regularity allows to formulate appropriate optimal control problems that help to find a special type of equilibria, called snowflake equilibria, that are a very promising concept to mitigate high heat loads due to plasma escaping particles.

Highlights

  • The possibility of using composite meshes in finite element (FE) simulations of industrial problems is a recurrent topic [8, 12, 28, 29, 33]

  • As it is naive to expect that technical devices can be entirely triangulated with Cartesian meshes, we introduce composite meshes involving Cartesian meshes in those subdomains where we want high regular FE representations and triangular unstructured meshes in those subdomains where we want conformity with the geometry

  • In [21] we introduced a FE method on composite meshes for free-boundary plasma equilibrium problems and showed that the numerical calculation of such equilibria benefits from approximating the poloidal flux through some higher regular FE functions in the interior of the limiter

Read more

Summary

Introduction

The possibility of using composite meshes in finite element (FE) simulations of industrial problems is a recurrent topic [8, 12, 28, 29, 33]. Composite meshes are involved as soon as the global discretization of a partial differential equation combines discretizations on local (overlapping or non-overlapping) subdomains, each suitably triangulated by nonmatching grids. The reason for using composite meshes are various: fitting the geometry or the local smoothness of the solution, resolving multiple scales in regions with irregular data, using fast solvers on structured grids or a divide-and-conquer/domain decomposition approach to very large problems on parallel machines. In general it is very difficult to introduce FE spaces over simplicial unstructured meshes with such. As it is naive to expect that technical devices can be entirely triangulated with Cartesian meshes, we introduce composite meshes involving Cartesian meshes in those subdomains where we want high regular FE representations and triangular unstructured meshes in those subdomains where we want conformity with the geometry

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call