Abstract
Abstract Extended depth of focus (DOF) with high lateral resolution is the primary requirement of the transducer in scanning acoustic microscopy to generate high-resolution images of the three-dimensional sample over a large depth. Traditionally, focused ultrasonic spherical transducers are used to tightly focus the acoustic waves generated from a piezoelectric material for a wide range of applications in industrial, medical, and other fields. Such transducers have a problem of narrow DOF which restricts the imaging range in depth. In the present work, we propose three different transducer designs such as single axicon, central flat axicon, and double axicon, which enable the possibilities of high transverse resolution imaging over greater depths due to the significant increase in DOF. Finite element modeling (FEM) in comsol of a spherical, single axicon, central flat axicon, and double axicon transducer is systematically performed and compared in terms of transverse resolution, DOF, and acoustic pressure in the central lobe. In addition, the single axicon and double axicon transducer modeling is done for different apex angles. It is observed that the central flat axicon transducer allows customizable DOF and the double axicon transducer provides high lateral resolution and reduced pressure in the side lobes compared to a single axicon lens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.