Abstract

The demands for aluminum alloy LF21 micro precision parts are increasing in the fields of aerospace, high-tech electronic products, and the other fields. Micro-milling is an effective technology for machining small LF21 precision parts. Cutting forces and temperature are crucial factors in micro-milling process, directly affect tool vibration, tool wear, and surface quality of the workpiece, and even result in large deformation of the tool and workpiece. Direct measurement of cutting forces during micro-milling requires high-precision and expensive instruments. Moreover, due to the small cutting area in micro-milling, it is challenging to achieve accurate measurements of cutting area temperature. Therefore, accurate prediction of cutting forces and temperature in micro-milling is urgent and challenging. Nowadays, there are few studies on prediction of cutting forces in micro-milling LF21. The study on prediction of temperature in micro-milling LF21 is still blank. To solve the above problems, this paper proposes a finite element method based on modeling for prediction of cutting forces and temperature in micro-milling LF21. ABAQUS software is adopted. First, the geometry models of the micro-milling tool and workpiece are established. Then, the assembly and mesh division of the established models are completed. Johnson-Cook constitutive model and Johnson-Cook damage criteria are used to describe the material constitutive relationship and chip separation criteria, respectively. The suitable tool-workpiece friction models are determined. Finally, the simulation of the micro-milling LF21 process is achieved. Experiments of micro-milling LF21 are conducted and the cutting forces are measured using the dynamometer. The validity of the built process simulation model and the correctness of the cutting force prediction results are verified by the comparison of experiment and simulation cutting forces. Then, the prediction of temperature is achieved based on the verified process simulation model of micro-milling LF21.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.