Abstract
PurposeCutting tool wear is known to affect tool life, surface quality, cutting forces and production time. Micro-milling of difficult-to-cut materials like Inconel 718 leads to significant flank wear on the cutting tool. To ensure the respect of final part specifications and to study cutting forces and tool catastrophic failure, flank wear (VB) has to be controlled. This paper aims to achieve flank wear prediction during micro-milling process, which fills the void of the commercial finite element software.Design/methodology/approachBased on tool geometry structure and DEFORM finite element simulation, flank wear of the micro tool during micro-milling process is obtained. Finally, experiments of micro-milling Inconel 718 validate the accuracy of the proposed method for predicting flank wear of the micro tool during micro-milling Inconel 718.FindingsA new prediction method for flank wear of the micro tool during micro-milling Inconel 718 based on the assumption that the wear volume can be assumed as a cone-shaped body is proposed. Compared with the existing experiment techniques for predicting tool wear during micro-milling process, the proposed method is simple to operate and is cost-effective. The existing finite element investigations on micro tool wear prediction mainly focus on micro tool axial wear depth, which affects size accuracy of machined workpiece seriously.Originality/valueThe research can provide significant knowledge on the usage of finite element method in predicting tool wear condition during micro-milling process. In addition, the method presented in this paper can provide support for studying the effect of tool flank wear on cutting forces during micro-milling process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.