Abstract
Abstract On the basis of Euler-Bernoulli beam theory, the large-amplitude free vibration analysis of functionally graded beams is investigated by means of a finite element formulation. The von Karman type nonlinear strain-displacement relationship is employed where the ends of the beam are constrained to move axially. The material properties are assumed to be graded in the thickness direction according to the power-law and sigmoid distributions. The finite element method is employed to discretize the nonlinear governing equations, which are then solved by the direct numerical integration technique in order to obtain the nonlinear vibration frequencies of functionally graded beams with different boundary conditions. The influences of power-law index, vibration amplitude, beam geometrical parameters and end supports on the free vibration frequencies are studied. The present numerical results compare very well with the results available from the literature where possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.