Abstract

Abstract We prove strong convergence for a large class of finite element methods for the time-dependent Joule heating problem in three spatial dimensions with mixed boundary conditions on Lipschitz domains. We consider conforming subspaces for the spatial discretization and the backward Euler scheme for the temporal discretization. Furthermore, we prove uniqueness and higher regularity of the solution on creased domains and additional regularity in the interior of the domain. Due to a variational formulation with a cut-off functional, the convergence analysis does not require a discrete maximum principle, permitting approximation spaces suitable for adaptive mesh refinement, responding to the difference in regularity within the domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call