Abstract
Detailed formulation and coding of exact finite element is carried out to study the static behavior of a layered beam structure. The beam element is modelled based on the first-order shear deformation theory and it is assumed to be composed of three layers whereas the middle layer is made of functionally graded material (FGM), i.e. with variable elastic properties in the thickness direction. The shape of the FGM mechanical properties variation in the thickness direction takes the form of exponential or power-law. The governing equations and boundary conditions are derived by applying the virtual work principle. Variations of displacements along the beam and stresses across the depth due to mechanical loadings are investigated. Comparative examples are carried out to highlight the static behavior difference between FGM layered beams and pure metal-ceramic beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.