Abstract

Loosening and migration of tibial prostheses have been identified as causes of early total knee replacement (TKR) failure. The problem is made more complex when defects occur in the proximal tibia compromising fixation and alignment. Clinical studies using metal augments have shown these to be an alternative to other means of defect treatment. Finite element (FE) analysis can be used to identify regions that may be prone to loosening and migration. In the current work, 3D FE models of TKR uncontained type-2 defects treated with block augments have been constructed and analysed. It has been shown that a metal augment is the most suitable. The use of bone cement (PMMA) to fill proximal defects is not considered suitable as stresses carried by the cement block exceed those of the fatigue limit of bone cement. It has been shown that the stresses in the proximal cancellous bone of block-augmented models are significantly below levels likely to cause damage due to overloading. Furthermore, the use of stem extensions has been shown to reduce the cancellous bone stresses in the proximal region thus increasing the likelihood of bone resorption. Given this, it is recommended that stem extensions are not required unless necessary to mitigate some other problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.