Abstract

The present paper deals with finite element analyses to estimate the healing efficiency of fractured long bones to which various composite bone plates are applied. To estimate the callus modulus according to the healing period, interfragmentary strain theory was used, and the iterative process for updating the newly determined callus properties in every finite element was implemented by a user-defined sub-routine constructed by the Python code. The results of analysis revealed that a composite bone plate made of a plain weave carbon/epoxy composite whose Young’s modulus was in the range of 30–70 GPa produced a positive effect on the healing efficiency relieving stress-shielding effect. This result can be used in the detailed design of high-performing composite bone plates to determine more effective shapes and stacking sequences for better healing efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.