Abstract
This paper examines the penetration and perforation of fibre-reinforced plastic (FRP) laminates struck by rigid projectiles with different nose shapes within a wide range of impact conditions using ABAQUS/Explicit code. It is assumed that the FRP laminate target response can be represented by a velocity dependent forcing function which eliminates discretizing the target as well as the need for a complex contact algorithm. The forcing function is then applied to the surface of the projectiles as boundary conditions in the numerical model. With this combined analytical and computational technique we can obtain the depth of penetration, residual velocity, ballistic limit, transient response in terms of time-histories of displacement/penetration, velocity and deceleration of the projectile. It is shown that the model predictions are in good correlation with available experimental data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have