Abstract

Recently, zirconia ceramic and glass or carbon fiber-reinforced poly-ether-ether-ketone (PEEK) composites have been introduced as newer implant biomaterials. This study was done to evaluate stress and deformation in bone with glass fiber-reinforced (GFR)-PEEK, zirconia, and titanium implants. A geometric model of mandibular molar replaced with implant-supported crown was generated. Implant of 12 mm length and 4.5 mm diameter was used in study. Finite element analysis models of implant assemblies of three materials GFR-PEEK, zirconium, and titanium were generated. 150 N loads were applied obliquely and vertically along the long axis of implant. Von Mises stresses and deformation generated were compared using ANSYS Workbench 17.0 and finite element software. All three implant assemblies, i.e., GFR-PEEK, zirconia, and titanium, demonstrated similar stresses and deformation in bone without significant difference. It was concluded that GFR-PEEK and zirconia implants can be used as a substitute to titanium implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.