Abstract

This study explored the bio-mechanical properties of polyether ether ketone (PEEK) and carbon fiber reinforced-PEEK (CFR-PEEK) as potential alternatives to traditional dental implant materials, such as titanium (Ti) and zirconia (ZrO2). Conventional implant materials often exhibit stress shielding leading to peri-implant bone loss and implant failure. Finite element analysis using a three-dimensional computer-aided-design (3D CAD) model of the jawbone with various implant materials (titanium, zirconia, PEEK, and CFR-PEEK) incorporated was implemented to assess the effectiveness of PEEK and CFR-PEEK. Two loading conditions (50 and 100 N) were applied in centric (case-1) and eccentric (case-2) to mimic the oral loading conditions. Titanium and zirconia implants were found to exhibit higher levels of stress shielding and therefore pose greater risks of bone loss and implant failure. Conversely, CFR-PEEK implants demonstrated more-uniform stress distributions that reduce the likelihood of stress shielding compared to their conventional counterparts; consequently, CFR-PEEK implants are particularly suitable for load-bearing applications. Furthermore, maximum strain values on PEEK-implanted cortical bone reached a state of adaptation, referred to as the "lazy zone" in which bone growth and bone loss rates are equal, indicating PEEK's potential for a long-term implant utilization. PEEK and CFR-PEEK implants are promising alternatives to conventional dental implants because they provide stress shielding and promote bone health. Improved stress distribution enhances long-term success and durability while mitigating complications, and highlights their applicability to dental implant procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.