Abstract
Crack deflection along the fiber/matrix interface for fiber-reinforced composites is an important condition upon which the toughening mechanisms depend. Sound control for the interface debonding of composites contributes to improving the fracture toughness of composites. Combined with the virtual crack closure technique, a finite element model of composites is proposed to predict the competition between the matrix crack deflection along the interface and the matrix crack penetration into the fibers under the thermomechanical coupling fields. For C/C composites, the effects of the geometry size, fiber volume fraction, fiber coating materials and thermal mismatch on the energy release rate and the crack deflection mechanisms are studied. Results show the fiber coating increases the ability to deflect at large thermal mismatch and small crack sizes, and the TaC coating shows larger effect than the SiC coating. The research provides fundamental method for promoting the toughening design of C/C composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.