Abstract

Crack deflection along the interphase for fiber reinforced ceramic matrix composites (CMCs) is an important condition upon which the toughening mechanisms depend. The multilayer interphase is designed and developed to enhance this deflection mechanism. Combined with the virtual crack closure technique, a finite element model was proposed to predict the competition between crack deflection and penetration in multilayer interphase of CMCs. The model was used to analysis the propagation of primary matrix crack in a SiCf/SiCm composite with (PyC/SiC)n multilayer interphase. The effects of the number of sublayers, thicknesses of sublayers and thermal residual stress (TRS) on the energy release rate and the crack deflection mechanisms were studied. Results show that the multilayer interphase increases the ability to deflect the matrix crack at interfaces between sublayers. Moreover, the number of sublayers shows a larger effect than the thicknesses of the sublayers. The influence of TRS is much complex and needs to be evaluated accordingly. The research provides an analysis tool for promoting the toughening design of CMCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.