Abstract

We describe a finite element algorithm for modeling stimulated Brillouin scattering in optical waveguides of arbitrary cross-section. The method allows rapid calculation of optical and elastic dispersion relations, field profiles, and gain. Additionally, we provide an open and extensible set of standard problems and reference materials to facilitate the bench-marking of our solver against subsequent tools. Such a resource is needed to help settle discrepancies between existing formulations and implementations, and to facilitate comparison between results in the literature. The resulting standardized testing framework will allow the community to gain confidence in new algorithms and will provide a common tool for the comparison of experimental designs of opto-acoustic waveguides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call