Abstract

There are several techniques to simulate rebar reinforced concrete, such as smeared model, discrete model, embedded model, CLIS (constrained Lagrange in solid) model, and CBIS (constrained beam in solid) model. In this study, however, the interaction between the concrete elements and the reinforcement beam elements is only simulated by the discrete model and CBIS (constrained beam in solid) model. The efficiency and accuracy comparisons are investigated with reference to the analysis results by both models provided by LS-DYNA explicit finite element software. The geometric models are created using LS-PrePost, general purpose preprocessing software for meshing. The meshed models are imported to LS-DYNA where the input files are then analyzed. Winfrith and CSCM concrete material options are employed to describe the concrete damage behavior. The reinforcement material model is capable of isotropic and kinematic hardening plasticity. The load versus midspan deflection curves of the finite element models correlate with those of the experiment. Under the conditions of the same level of accuracy, the CBIS model is evaluated to have the following advantages over the discrete model. First, it has the advantage of reducing the time required for FE modeling; second, saving computer CPU time due to a reduction in total number of nodes; and third, securing a good aspect ratio of concrete elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.