Abstract

Interaction mechanism between the intralaminar damage and interlaminar delamination of composite laminates is always a challenging issue. It is important to consider the progressive failure and strain softening behaviors simultaneously during the damage modeling and numerical simulation of composites using FEA. This paper performs three-dimensional finite element analysis of the progressive failure and strain localization of composites using FEA. An intralaminar progressive failure model based on the strain components is proposed and the nonlinear cohesive model is used to predict the delamination growth. In particular, the nonlocal integral theory which introduces a length scale into the governing equations is used to regularize the strain localization problems of composite structures. Special finite element codes are developed using ABAQUS to predict the intralaminar and interlaminar damage evolution of composites simultaneously. The carbon fiber/epoxy composite laminates with a central hole demonstrates the developed theoretical models and numerical algorithm by discussing the effects of the mesh sizes and layups patterns. It is shown the strain localization problem can be well solved in the progressive failure analysis of composites when the energy dissipation due to the damage of the fiber, matrix and interface occurs at a relatively wide area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.