Abstract
The present work deals with a two-step nonlinear finite element analysis for misaligned multi-disk rotors on short oil-film bearings of various types (cylindrical, pocket, symmetrical three-lobed, unsymmetrical three-lobed). As a first step, the conventional parallel, angular and combined parallel and angular misalignments are modelled using Lagrange multipliers. The static equilibrium position of the journal within the bearing is determined using an iterative nonlinear static finite element analysis. The present work proposes a method for computing the displacement-dependent stiffness terms from the experimental static load-displacement data. Finally, the orbit of the rotor around the static equilibrium is determined using a time-integration scheme.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.