Abstract

The purpose of our study is to develop and validate three-dimensional finite element models of transforaminal lumbar interbody fusion, and explore the most appropriate method of fixation and fusion by comparing biomechanical characteristics of different fixation method. We developed four fusion models: bilateral pedicle screws fixation with a single cage insertion model (A), bilateral pedicle screws fixation with two cages insertion model (B), unilateral pedicle screws fixation with a single cage insertion model (C), and unilateral pedicle screws fixation with two cages insertion model (D); the models were subjected to different forces including anterior bending, posterior extension, left bending, right bending, rotation, and axial compressive. The von Mises stress of the fusion segments on the pedicle screw and cages was recorded. Angular variation and stress of pedicle screw and cage were compared. There were differences of Von Mises peak stress among four models, but were within the range of maximum force. The angular variation in A, B, C, and D decreased significantly compared with normal. There was no significant difference of angular variation between A and B, and C and D. Bilateral pedicle screws fixation had more superior biomechanics than unilateral pedicle screws fixation. In conclusion, the lumbar interbody fusion models were established using varying fixation methods, and the results verified that unilateral pedicle screws fixation with a single cage could meet the stability demand in minimal invasive transforaminal interbody fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call