Abstract
The paper covers the subject of FE modeling of adhesive joints, which is gaining more and more attention in the contemporary industry, especially in the aerospace and automotive sectors. This technique of creating structural connections possesses many advantages over mechanical or welding methods and it seems that it will be exploited extensively in the future mechanical design. Ability of joining dissimilar materials, decreased minimum member cross-section size and corrosion inertness can be considered as its most important features. However, in the era of virtual prototyping, it is necessary to conduct reliable computer assisted analyses of these type of joints. It is because most of the contemporary structures are developed as numerical models first, and only the final product is prototyped physically, to validate the simulation results. The aim of this paper is to demonstrate how to elaborate a reliable and accurate adhesive joint models, using a cohesive zone modeling (CZM) method. The major profitable consequence of using the CZM technique is that it introduces into the model relatively small number of spatial degrees of freedom, and therefore, allows for short computational times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.