Abstract
LetH be an ℝ-subgroup of a ℚ-algebraic groupG. We study the connection between the dynamics of the subgroup action ofH onG/Gℤ and the representation-theoretic properties ofH being observable and epimorphic inG. We show that ifH is a ℚ-subgroup thenH is observable inG if and only if a certainH orbit is closed inG/Gℤ; that ifH is epimorphic inG then the action ofH onG/Gℤ is minimal, and that the converse holds whenH is a ℚ-subgroup ofG; and that ifH is a ℚ-subgroup ofG then the closure of the orbit underH of the identity coset image inG/Gℤ is the orbit of the same point under the observable envelope ofH inG. Thus in subgroup actions on homogeneous spaces, closures of ‘rational orbits’ (orbits in which everything which can be defined over ℚ, is defined over ℚ) are always submanifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.