Abstract

The issue of how to deal with the modular transformations -- large diffeomorphisms -- in (2+1)-quantum gravity on the torus is discussed. I study the Chern-Simons/connection representation and show that the behavior of the modular transformations on the reduced configuration space is so bad that it is possible to rule out all finite dimensional unitary representations of the modular group on the Hilbert space of $L^2$-functions on the reduced configuration space. Furthermore, by assuming piecewise continuity for a dense subset of the vectors in any Hilbert space based on the space of complex valued functions on the reduced configuration space, it is shown that finite dimensional representations are excluded no matter what inner-product we define in this vector space. A brief discussion of the loop- and ADM-representations is also included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.