Abstract
This paper addresses the design of finite-dimensional feedback control laws for linear discrete-time fractional-order systems with additive state disturbance. A set of sufficient conditions are provided to guarantee convergence of the state trajectories to an ultimate bound around the origin with size increasing with the magnitude of the disturbances. Performing a suitable change of coordinates, the latter result can be used to design a controller that is able to track reference trajectories that are solutions of the unperturbed fractional-order system. To overcome the challenges associated with the generation of such solutions, we address the practical case where the references to be tracked are generated as a solution of a specific finite-dimensional approximation of the original fractional-order system. In this case, the tracking error trajectory is driven to an asymptotic bound that is increasing with the magnitude of the disturbances and decreases with the increment in the accuracy of the approximation. The proposed controllers are finite-dimensional, in the sense that the computation of the control input only requires a finite number of previous state and input vectors of the system. Numerical simulations illustrate the proposed design methods in different scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.