Abstract

This paper presents a new approach to modeling of linear time-invariant discrete-time non-commensurate fractional-order single-input single-output state space systems by means of the Balanced Truncation and Frequency Weighted model order reduction methods based on the cross Gramian. These reduction methods are applied to the specific rational (integer-order) FIR-based approximation to the fractional-order system, which enables to introduce simple, analytical formulae for determination of the cross Gramian of the system. This leads to significant decrease of computational burden in the reduction algorithm. As a result, a rational and relatively low-order state space approximator for the fractional-order system is obtained. A simulation experiment illustrates an efficiency of the introduced methodology in terms of high approximation accuracy and low time complexity of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.