Abstract

We refine the asymptotic behavior of solutions to the semilinear heat equation with Sobolev subcritical power nonlinearity which blow up in some finite time at a blow-up point where the (supposed to be generic) profile holds. In order to obtain this refinement, we have to abandon the explicit profile function as a first order approximation, and take a non explicit function as a first order description of the singular behavior. This non explicit function is in fact a special solution which we construct, obeying some refined prescribed behavior. The construction relies on the reduction of the problem to a finite dimensional one and the use of a topological argument based on index theory to conclude. Surprisingly, the new non explicit profiles which we construct make a family with finite degrees of freedom, namely $\frac{(N+1)N}{2}$ if $N$ is the dimension of the space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.