Abstract

We consider the semilinear heat equation \begin{eqnarray*} \partial_t u = \Delta u + |u|^{p-1} u \ln ^{\alpha}( u^2 +2), \end{eqnarray*} in the whole space $\mathbb{R}^n$, where $p > 1$ and $ \alpha \in \mathbb{R}$. Unlike the standard case $\alpha = 0$, this equation is not scaling invariant. We construct for this equation a solution which blows up in finite time $T$ only at one blowup point $a$, according to the following asymptotic dynamics: \begin{eqnarray*} u(x,t) \sim \psi(t) \left(1 + \frac{(p-1)|x-a|^2}{4p(T -t)|\ln(T -t)|} \right)^{-\frac{1}{p-1}} \text{ as } t \to T, \end{eqnarray*} where $\psi(t)$ is the unique positive solution of the ODE \begin{eqnarray*} \psi' = \psi^p \ln^{\alpha}(\psi^2 +2), \quad \lim_{t\to T}\psi(t) = + \infty. \end{eqnarray*} The construction relies on the reduction of the problem to a finite dimensional one and a topological argument based on the index theory to get the conclusion. By the interpretation of the parameters of the finite dimensional problem in terms of the blowup time and the blowup point, we show the stability of the constructed solution with respect to perturbations in initial data. To our knowledge, this is the first successful construction for a genuinely non-scale invariant PDE of a stable blowup solution with the derivation of the blowup profile. From this point of view, we consider our result as a breakthrough.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.