Abstract
We continue the study of finite field dependent BRST (FFBRST) symmetry in the quantum theory of gauge fields. An expression for the Jacobian of path integral measure is presented, depending on a finite field-dependent parameter, and the FFBRST symmetry is then applied to a number of well-established quantum gauge theories in a form which includes higher-derivative terms. Specifically, we examine the corresponding versions of the Maxwell theory, non-Abelian vector field theory, and gravitation theory. We present a systematic mapping between different forms of gauge-fixing, including those with higher-derivative terms, for which these theories have better renormalization properties. In doing so, we also provide the independence of the S-matrix from a particular gauge-fixing with higher derivatives. Following this method, a higher-derivative quantum action can be constructed for any gauge theory in the FFBRST framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.